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1. Introduction

The optical properties of trivalent rare-earth ions (R*) in yttrium
aluminum garnet, Y3AISO12 {YAQG), continue to be of great interest
following recent developments in solid-state lasers and magneto-
optical materials {1-5].* Over the years, the optical spectrum of
Pr*:YAG has been studied by various groups [6-11], but there remain
many uncertainties and ambiguities regarding the assignments. Al-
though Pr’* ions substitute predominantly for Y?* ions in the dodeca-
hedral sites of D, symmetry, several minority sites are occupied as
well. This observation is not unique to Pr*:YAG, but is found for other
R3*:YAG materials ac well [12-15). Different sites can arise from
defects caused by loss of oxygen from the lattice during crystal growth
[16]. Consequently, increased attention has been placed on growing
high-quality R>*:YAG crystals.

We have investigated the spactroscopy of ™. YAG between 2,006 «nd
25,000 cm™ at several temperatures between 1.6 and 90 K. In addition
to absorption spectra, fluorescence from *P,and site-selective emis-
sion spectra from 'D, were recorded. The most intense spectra,
representing Pr** ions in D, sites, were analyzed according to electric-
dipole selection rules for D, symmetry. The intense spectra included
a number of hot bands that were analyzed. The analyses were aided
by the knowledge that the ground state has i’; symmetry and that the
’P, level has I', symmetry [8]. Fifty-one experimental Stark levels
whose symmetry labels were established by this method of analysis
were compared with a calculation that involved a Hamiltonian con-
taining Coulombic, spin-orbit, and crystal-field terms in D, symmetry
for all manifolds of the 4f ? configuration. The initial set of nine crystal-
field parameters, B, ., was established from a lattice-sum calculation.
By varying the crystal-field parameters, it was possible to obtain
overall agreement between calculated and experimental levels with
anrms deviation of 11 cm™. Additional levels, whose symmetry could
not be established from experiment, were assigned from the results of
the crystal-field calculation.

*References are listed at the end of the report.




2. Experimental Introduction

Two single crystals of Pr’:YAG were grown parallel to the <111>
direction using the Czochraiski method. The garnet melt was doped
with praseodymium oxide, and the crystal growth took place in a
nitrogen atmosphere containing 1000 ppm of oxygen. Discs were cut
parallel to the (111) plane. The doping appeared to be uniform
throughout the discs. Based on the distribution coefficient for the
dopant, the crystals contained approximately 0.02 and 0.08 at. wt.%
praseodymium based on yttrium. The concentrations as determined
by electron-beam microprcbe analysis were 0.018 and 0.072 at. wt. %,
respectively.

A Nicolet model 7199 Fourier transform infrared (FTIR) spectrometer
was used to obtain spectra between 1500 and 6000 cm™'. The accuracy
in determining the wavelength of the absorption peaks was limited by
a combination of instrument resolution (0.25 cm™) and observed spec-
tral linewidths. Absorption spectra between 2.5 and 0.4 um (4,000 to
25,000 cm™') were measured with a Cary model 17D spectrophotome-
ter. At 0.4 um, the accuracy is better than 0.2 nm; the resolution is
better than 0.1 nm. The precisioninmeasuring the separation between
peaks having apparentspectral linewidths of 0.2 nm s better than 0.02
nm. For data recorded at the same wavelength on both instruments,
agreement is better than 2 cm.

A conduction dewar filled with liquid nitrogen or liquid helium was
used to obtain crystal spectra at nominally liquid nitrogen or liquia
helium temperatures. At least 30 minutes was allowed for equilibra-
tion before spectra were obtained. Sample temperatures were not
measured directly. However, from previous experience in taking
similar spectra, we estimate the crystal temperatures as 90 and 15 K,
respectively.

Absorption and emission spectra were also recorded between 0.4 and
0.8 umusinga1.0-m Czerny-Turner Jarrell-Ash double monochroma-
tor with a resolution of 0.02 nm. The measured sample temperature
in a liquid helium immersion cryostat was 1.6 K. Wavelengths were
calibrated against the spectrum of neon. The wavelengths of the
sharpest absorption peaks were determined with an accuracy of 0.05
nm.
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3. Syminetry, Selection Rules, and Assignments

Yttrium aluminum garnet has cubic space group symmetry O/° (Ia3d)
with eight formula units per unit cell [17,18]. The site symmetries of
the ions are as follows: D, (Y*), C, (A*), S,(AL)"), and C, (O*). The
Pr’* ions that substitute for Y** ions on the dodecahedral sites experi-
ence a crystal field of D, symmetry. There are six magnetically
inequivalentorientations of thesesites in the crystal. Thelocalx,y,and
z axes of the Pr®* ion sites are oriented aiong the (110), (110), and (001)
crystal axes (and the six equivalent directions) with az-axis coinciding
with the (001) crystal axis by convention {19].

The D, point group contains four one-dimensional irreducible
representations, I' ,I",,I",,and T, according to Bethe notation [20]. For
Pr’ (4f7), each ¥/, manifold is split into 2] + 1 nondegenerate compo-
nents (Stark levels). Table 1 gives the representations for each value
of ] up to 6. Table 2 presents the selection rules for electric-dipole
transitions.

The dipole nature of the electronic transition is difficult to establish in
crystals of R**:YAG because the overall symmetry is cubic. From
linear uichroism measurements on samples with unequal site occupa-
tion, van der Ziel et al {8] observed only electric-dipole transitions in
Pr*:'YAG. They determined that the ground state has I'; symmetry
and the second excited Stark level at 50 cm™ has either [, or I,

Table 1. Full rotation

compatibility table J r, r, r I,
for D

2 BTOUP 0 1 0 0 0

1 0 1 I 1

2 2 i 1 1

3 1 2 2 2

4 3 2 2 2

5 2 3 3 3

6 4 3 3 3

Total* 28 21 21 21

*Total number of U in electronic configuration 4f°.

Table 2. Electric-

dipole selection I T, r, T,
rules for D, r
— y z X
symme ;
ymmetry r ; a : :
T, z x — y
r, x z y —
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symmetry. We chose I, symmetry for the level at 50 cm™’ on the basis
of our crystal-field splitting calculation and the consistency we found
in our analysis of hot-band data, which included transitions from the
50-cm”! level.

For D, symmetry, electric-dipole transitions from the ground state to
excited Stark levels having I', symmetry are forbidden. The absence
of emission from the *P_ level, which has I' symmetry, to the first
excited Stairk ievel at 19 cm™' indicates that the leve: has ', symmetry.
Since electric-dipole transitions from the ground state to excited Stark
levels having I', symmetry are forbidden, absorption lines corre-
sponding to hot bands separated by 31 cm™, but lacking a low-
temperature electronic origin, can be used to establish excited I, Stark
levels.

Our analysis of the optical spectra reported in the next section is based
on the following points:

Levels observed in the P emission spectrum have either I',, ', or I,
symmetry; levels established from other measurements, but absent
from the *P; emission spectrum, have I', symmetry.

levels observed in the 'D, emission have either I' , I",, or I', symmetry
based on the analysis of the hot bands associated with the 16,409 cm™
Stark level, which has T, symmetry; levels observed in emission
spectra from both °P and 'D, have I', or I', symmetry; if the emission
terminates on a level observed in absorption, then since the ground
state has I', symmetry, the terminal level will have I', symmetry.

In absorption, if hot-band transitions are present that are 50 cm™' to the
low-energy side of a transition that persists at liquid helium tempera-
ture, but reveal no 19-cm™ hot band, then the persisting transition is
aentiticd a5 cactean ckaitnd T Stark Jevel,

Levels observed in the absorption spectrum recorded at 1.6 K have T,
I, orI',symmetry. If transitions to these levels show evidence of hot
bands at 19 and 50 cm™ to the low-energy side of the persisting
transiticr, the excited states have I', symmetry.

Excited I', Stark levels can be located by observing a pair of hot bands
in absorption separated by 31 cm™ and inferring the energy of the
forbidden I', — I, transition.

If only a single 19-cm™ hot band is associated with a transition that
persists at liquid helium temperature, the excited Stark level has I',
symmetry.




4. Absorption Spectra

Tables 3 to S (given at the end of this section) summarize the results of
absorption measurements recorded at 1.6 K, liquid helium tempera-
ture (LHe), and liquid nitrogen temperature (LN). The observed
spectra appear in figures 1 to 8. From the total number of absorption
peaks observed, many of which are weak, it is clear that the Pr** ions
occupy several kinds of sites. Thc weak peaks retain their relative
strengths at low concentrations and hence are not thought to be
associated with pairs or clusters of Pr** ions. Itis difficult to determine
whether weak peaks are due to weak transitions of Pr** ions in D, sites
or strong transitions of Pr’* ions in minority sites. Only the most
intense spectra in a given manifold are assigned to transitions of Pr
ions in D, sites. These transitions are indicated in the fourth columns
in tables 3 to 5.

Transitions corresponding to the strongest absorption peaks observed
are identified using labels introduced by Dieke [21]. More than 100
temperature-dependent (hot-band) transitions were 11sed to establish
the first two excited Stark levels, Z,at19 cm™' and Z,at50 cm™, in
agreement with values reported earhier (7] and in agreement with the
results obtained from the emission spectra from P and 'D,. The
absence of a transition in absorption and emission between the 19 cm™!
(*H,) and 20,534 cm™ (*P) levels indicates that Z, (19 em™') has [,
symmetry. We choseI', symmetry for the 50-cm™' level based on our
crystal-field splitting calculation; the analysis of the hot-band data is
consistent with this choice.

The infrared absorption spectra of the 'H,, 'H,, and °F, manifolds
recorded by the FTIR spectrometer are presented in figures 1 and 2.
The absorption peaks become increasingly sharp toward the low-
energy side of each manifold since the higher energy levels are
broadened by spontaneous phonon emission. This is typical of solid-
staterare-earthionspectra. Multiphonon absorption due to the garnet
lattice appears below 2200 cm™. The spectrarecorded at LN tempera-
ture arereported in order toshow severalrelatively intense transitions
from Z, at 50 cm™'. Similar, relatively intense hot bands originating
from Z, are ovserved throughoeut the spectrum.

Figures 3and 4 display the near-infrared absorption spectra of the °F,
’F,, and 'G, manifolds. Froximitv between the °F, and *F, manifolds
makes it necessary to consider a combined manirold of Stack levels for
analysis. The intense sharp spectra and the hot-band assignments




generally agree with the analysis reported by Hooge {7]. The rela-
tively weak 'G, absorption spectruin does not contain all the expected
transitions. The lack of strong absorption peaks makes it difficult to
determine the relative ordering among Stark levels and the overall
-iitting of the manifold. The predicted crystal-field splitting of the
manifold suggests that not all the Stark levels have been observed.

12
Figure 1. Ab,orption ;
spectrum. of *H, [
marn.told recorded at or
'.3uid nitrogen
itemperature,

Absorbance

00 1 1 L4 L 1 1
2800 2600 2400 2200

Wavenumbers (cm-1)

08

Absorbance

06}

Odr-
PN A——U

024}

00 1 1 1 L | 1 1 1 — 4 1 1 1 1

5600 5200 4800 4400
Wavenumbers (cm™ 1)
Figure 2. Absorption spectra of 'F, and *H_manifolds recorded at 90 K.
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To eliminate hot-band absorption entirely, absorption measurements
of the'D,,°P;,’P , 'l and °P, manifolds were made at 1.6 K. The result
is the relatively simule spectra appearing in figures 5 to 8. Four
principal absorption peaks, representing transitions from Z to B, B,,
B, and B, of the 'D, manifold appear in figure 5 and are listed in table
5. From the higher temperature data, two hot bands 31 cm™" apart
establish the B, level at 17,088 cm™'. The symmetry of the B, levelis ",
following the electric-dipole selection rules of table 2. Two weak
peaks at 16,800 and 16,923 cm™' are assigned to Pr’* ions in other sites.

The *P_ absorption at 20,534 cm™' (Z, — C)) (fig. 6) is assigned to Pr’**
ionsin D, sites in agreement with earlier work {7-11]. The abscrption
1s strong and is comparable to that observed from the ground state to
levels W,, V., V,, B, El, and E,. The weak peaks found on either side
are attributed to Pr* ions in other sites. The intense peak at 20,534 cm™!
is also observed in fluorescence at 1.6 K. The predicted crystal-field
splitting of the 'I, manifold (tables 6 and 7) is approximately 1500 cm™!

Transmittance (arbitraty umits)

1L i1 1 1

130

140 150 160
Wavelength (um

Figure 3. Absorption spectra of *F, and 'F, manifolds recorded at 15K.
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and overlaps the predicted splitting or the ’P, manifold. We assume
that the strong absorption at 1.6 K found at 21,045 and 21,113 cm ™ is
part of the *P, manifold since 'H, — I, absorption is expected to . :
weak. Figure 7 indicates that only a few transitions to the '/, man.fold
were observed The number is insufficient to establish tne overall
spilitting of the 'l manifold. At1.6 K, absorption peaks were observed
at 20,805, 20,823, 21,667, and 21,869 cm™".

Transmittance (arbitrary units)

L
0.98 1.00 1.02 1.04

Wavelength (um)

Figure 4. Absorption spectrum of 'G, manifold recorded at 15 K.

ofF——_ — ’ \\ .
5K m
£ 10k N
°
(-]
15 — -
20 1 | . _ e
5800 5900 6000 6100

Wavelength (A)
Figure 5. Absorption spectrum of 'D, manifold recorded at 1.6 K.
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At 1.6 K the absorption to the *P, manifold observed between 22,100
and 22,600 cm™’ consists of » rree peaks. Hot bands assist in making the
following assignments: 22,103 ([")), 22,153 (I")), and 22,295 (")) cm™*.
Particularly noticeable even at 1.6 K (fig. 8) are the broad absorption
bands that result from spontaneous phonon decay. A pair of hot
bands places the I', level at 22,416 cm™".

r T T T T T
H————'-n o] = ("””Tﬁ
\
OF —
| 5= —
£
i - °
- 5 ol |
£
L
8 5 —
15 r— —
2 : T
i I 1 1 |
4725 4750 4775 4800
sk B Wavelength (A)
Figure 7. Absorption spectra of *P, and I, mani-
folds recorded at 1.6 K.
I |
4850 4857 4900

Wavelength (A)

Figure 6. Absorption spectrum of *P at 1.6 K;
four weak, sharp peaks clustered around intense
peak suggest that Pr** ions are found in minority

sites.
T T T
O+ —_— —
,".‘
£
S s —
-]
10+ —
L i |
4500 4550 4600 4650

Wavelength (A)
Figure 8. Absorption spectrum of *P, manifold recorded at 1.6 K.

13




Table 3. P D Level
Absorption Bl E(cm 'ty I Transition  (cm }) {cm ') {cm ) rs
and emis-
sionspectra 1/, 0 — ) 0 0 0 3 (ref. 8)
of ’H 19 — (Z) — 18 19 1(a,b,c)
manifolds 50 - VAY 51 51 50 4(a,b, 0
— - ) — 533 533 1(a,b)
Note: sh — — (Z) 576 — 576 2-4 (a)
denotes — - (Z,) — 742 742 1(@a.b)
shoulder; bd
denotes Rz 2209 <0.01 — — — - —
broad; . .. 2221 0.01 _ _ _ — —_
indicates that 2242+ 0.27 Z,-Y, — — — —
presence of 2261* 0.17 Z,-Y, _ — — —
level is 2274* 0.20 Z,-Y, — — — —
inferred (see 2280* 0.17 Z,-Y, - — — —
sect. 3. 2293 0.41 7Y, — — 2293 2(d)
paragraph ¢). 2299 0.36 Z,-Y, 2295 2295 2299 4 @b
(r) — — (2311) 3 (c)
2347*(shy  0.05 — — — — _—
2351 0.14 Z,-Y, — — 2351 1(c)
2380* 0.06 Z,-Y, — — — —
2399 0.09 Z-Y, 2398 2398 2399 (ad)
2520* 0.09 Z-Y, — — — —
2551* 0.10 Z,-Y, — — — —
. . (¥, — — (2570) 3 (e)
2562* 0.20 2,-Y, — — — —
2581 0.18 Z Y, 2580 2580 2581 4 (ab,f
2599 0.06 Z,-Y, — — - —
2602 0.12 Z, Y, — — 2602 1(c)
2618 0.10 Z,-Y, — — 2618 2 (d)
2669 bhd — — — — —
2688 bd — — — — —
2752 0.01 — — — — —
2790* 0.02 Z,-Y, — — — —
2800* 0.03 2,-Y,, — — — —
2820 0.04 2,-Y,, — — 2820 4(f)
2822%(shy  0.02 Z,-Y, — — — —
.. . ) 2841 2841 2840 3(abe)
2850 bd — — — — —
i, 4214 0.01 — — — — —
4244 0.02 — — — — —
4265+ 0.11 7,-X, — - — —
4286* 0.11 Z,-X, — — — —
4289* 0.12 Z,-X, — — — —
4305 0.24 Z,-X, — — 4305 4(n
4316 0.35 Z,-X, — — 4316 1 (c)
14




Table 3 3P°4 ‘Dz‘ LeveY

{cont'd). =L, E(cmy s Transition®  (cm*)  (em')  (cm ) rs

Absorption

and emission /, 4321* 0.17 Z,-X, - — _ _

spectraof *H, (cont'd) e . X,) — — 4339 3 (e)

manifolds 4347 0.01 — - — — _
4358 0.06 Z,-X, — — 4358 1(c)
4391+ 0.02 Z,-X, — — — —
4403*(sh) 0.02 — — — — —
4409 0.03 Z X, — — 4409 2(d)
4420* 0.02 Z,-X, — — — —

e - Xy — — 4440 3(e)

4548+ 0.03 Z,-X, — — — —
4558* 0.02 - — — _ —_
4567 0.04 yA — — 4567 4(f)
4793* 0.01 Z,—»X” — — — —_
4824+ 0.01 Z,-X | — — — —
4843 0.02 A —)X — — 4843 2(d)
4994 0.02 Z,-X — — — —
5045 0.03 1——>X 12 — — 5045 1(c)
5091 0.03 Z,-X,, — — — —
5122* 0.10 Z,-X,, — — — —
5141 0.12 Z-X,, — — 5141 2(d)

*  Absorption spectra recorded at LHe temperature for 3/, LN temperature for My,

room temperature spectra for both manifolds were used to establish hot bands,

denoted by *.

Intensity in absorbance units.

¢ Transitions assigned to absorption spectra of Pr** in D, sites.

Fluorescence spectrum from *P at 1.6 K.

¢ Selectively pumped ﬂuoresccnce spectrum from 'D, at 1.6 K.

/" Experimental energy levels assigned 1o Pr?* in D, snles

¢ D, symmeltry representations I'.I,T,andT, lcucrs in parentheses refer to method of assign-
mcnt described in sect. 3.

Ref. 8 identifies Z, as either I", or I',. observed emission from the 16,409 cm ! level (which has
", symmetry bascd on an analysns of hot bands in the absorption spectrum) indicates that Z, has
F symmetry, in agrecment with calculations in table 7.

15




Table 4. Absorp-
tion spectra of °F,
manifolds

Note: sh denotes
shoulder; bd
denotes broad; . . .
indicates that
presence of level is
inferred (sce sect. 3,

paragraph e).

16

Leveld
BL, E (cm™') " Transition (cm Y r:
F 5290 <0.01 — — —
5305 0.01 — — —
5346 0.32 Z,-W, — —
5365 0.23 Z|—~)Wl 5365 4 ()
5379* 0.92 Z,-W, — —
5411 0.55 Z,-W, — —
5430 142 Z W, 5430 2(d)
5485% 0.05 Z,-W, — —
5516* 0.04 Z,-W, — —
.. . w,) (5535) 3(c)
5535+ 032 Z,-W, — —
5585 0.03 Z,-W, 5585 ()
5621 <0.01 — — —
F 6417* 0.20 Z,-V, — —
6432* 0.70 Z,-VY, — —~
6448* 0.86 Z,-5V, — —
. . v) (6467) 3 (c)
6482 1.30 Z,-V, 6482 I ()
6511 0.15 — — —
6541* 1.30 zZ,-V, — —
6561 040 Z,-5V, 6561 4 ()
6572 0.03 — — —
6590 0.03 — — —
6760 0.90 Z,-V, — -
6779*(sh) 0.80 Z,-V, — —
6781 1.40 Z,-V, 6781 4
6812* 1.40 Z,-V, — —
6831(sh) 1.12 Z,-V, 6831 2(d)
6857 0.02 — — —
6876 0.02 — — —
6943* 0.20 Z,-V, — —
6973+ 0.10 ZV, — —
6994 0.30 ZV, 6994 2(0)
oF, 7035* 0.06 Z,-U, — —
7041* 0.05 Z,-U, — —
7060 0.03 Z, -, 7060 a(f
7085 0.40 Z,-U, 7085 1(c)
7092* 0.30 Z,-U, — —
7122+ 0.65 Z,-U, — —
7142 0.30 Z,-U, 7142 2(d)
7161 0.03 — —_
7194* 0.05 Z,-U — —




Table 4 (cont'd). Level?

Absorption B, E (cm'y r Transition* (cm™) r:

spectra of °F,

manifolds oF, 7245 9.09 Z,-U, 7245 1)

(cont’d) 7280* 0.06 Z,-U, — —

7297 0.75 Z-U 7297 4 (f)
7319 0.25 Z,-U, 7319 2(d)
7370 0.05 Z,-U, — —
7402* 0.10 Z,-U, — —
. o w, (7421) 3(e)
7440* 0.10 z,-U, — —
7490 0.05 Z-U 7490 1(c)

Spectra recorded on spectrophotometer at LHe temperature.

Intensity in absorbance units.

¢ Transitions assigned to spectra of Pr** in D, sites.

Experimental cnergy levels assigned to Pr** in D, sites.

D, symmeltry representations given to assigned Stark levels; letters in parenthescs refer to
method of assignment described in sect. 3.
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Table 5.
Absorption
spectraof 'G,,
ID’JPVIIUSP]'
and’P,
manifolds

Note: * refers to
observed hot
bands at LN
temperature; sh
denotes shoul-
der; bd = broad,
usually very
weak, Pr site
uncertain; . . .
indicaics that
presence of level
is inferred (sce
sect. 3, para-
graphe).
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Level*
BiL, E(cm 'y 1 Transition* E (cm 'y (cm™) r/
'G, 9.667* 0.08 Z,5A, — — —
9,698* 0.12 Z,-A, — — —
9717 0.06 2,04, — 9717 2 (d)
9,775% bd — — — —
9,780* 0.10 Z,-A, — — —
9,828 0.07 Z A, — 9.828 1(c)
10.096* 0.02 Z,-A, — — —
10,116 0.03 Z,-4, — 10,116 4
10211* 0.01 Z,-4, — — —
10,262* 0.03 Z,-A, — — —
10,282 0.03 Z A, — 10,282 2 (d)
10,330* 0.02 Z,-A, — — —
10,360* 0.02 2,54, — — —
(Ay) — (10,380) 3 ()
D, 16,264 0.01 - — — —
16,324 0.02 — — — —
16,350*(sh) 0.30 Z,-B, — — —
16,358* 0.83 Z,-8, — — —
16,381(sh) 0.03 — — — —
16,390* 0.50 Z,-B, — — —
16,400 0.46 Z -8B, 16,400 16,400 1 (c)
16,409 1.10 Z -8B, 16410 16,409 2 (b,d)
16,478 0.01 — — — —
16,755 0.01 —_ — — —
16,777 <0.01 —_ — — —
16,805 0.05 — 16,800 — —
16,830* 1.19 Z,-8B, — — —
16,856 0.03 — -— — —
16,881 0.23 Z,-8B, 16,887 16,881 I (c)
16,903 0.03 — — — —_—
16,921 0.03 — 16,919 — —
16,956 <0.01 —_— — — —
17,037* 0.26 Z,-B, — — —
17,069* 0.06 2,58, — — —_
oL C (B4) — (17,088) 3(c)
17,191(shy* 0.07 Z,—-B, — — —
17,210 0.17 Z,-8, 17,207 17,210 4(f)
17.250 bd — — — —
P, 20,459 0.04 — — — —
20,483* 0.20 Z,-C, — — —
20,517 0.05 — — — _—
20,534 0.60 Z—-C 20,530 20,534 1(ac)




Table 5
(cont'd).
Absorption
spectraof 'G,,
lDyJPy l’UJpV
and’P,
manifolds

Level

BL, E(m')y I Transition* E (cmy (cm™) r/
i, 20,681 0.02 — — — —
and 20,701 0.03 — — — —
P 20,755* 0.03 — — — —
20,781+ 0.03 — — — —

20,786* 0.10 — — — —

20,805 6.20 — 20,805 — —

20,831 0.05 — 20,823 — —

20,942 <0.01 — — — —

20,950 <0.01 — — — —

20,994* 0.51 Z>E, — — —
21,010*sh) 004 — — — —

21,026* 0.23 Z,-E, — — —

21,045 1.32 Z -k, 21,045 21,045 2(d.°F)

21,087+ 0.09 — — — —

21,093* 0.09 Z,-E, — — —

21,113 0.87 Z,-E, 21,113 21,113 a{or,

21,140 0.03* — 21,135 — —

21,152* 0.25 — — — —

21,520 0.03 — — — —

21,568* 0.05 — — — —

21,588 0.15 — — — —

21,651* 0.60 — — — —

21,672 1.10 — 21,007 — —

21,732 0.03 — — — —

21,781 0.0 — — — —

21,810 0.01 — — — —

21,820* 0.10 — — — —

21,870 0.27 — 21,869 — —

P 22,054* 0.50 Z,9F, —_ — —
22,084% 0.95 Z,>F, — — —

22,103 1.12 Z,-F, 22,100 22,103 2(d)

22,153 0.60 Z,—F, 22,150 22,153 1(c)

22,245+ 0.14 Z,-F, — — —

22,295 0.25 Z,-F, 22,288 22,295 1(c)

22,367 0.08 Z,-F, — 22,367 4(

22,397 0.12 Z,-F, — — —

. .. (F) — (22,416) 3(d)

22,570 bd — — — —

a A o &

Spectra recorded on spectrophotometer at LHe temperature.

Intcnsity in absorbance units.

Transitions assigned to spectra of Pr* in D, sitcs.

Spectra recorded at 1.6 K.

Observed cnergy levels of Pr** in D, sitcs.

D, symmetry represcntations given to assigned Stark levels; letters in parentheses refer 10
mcthod of assignment given in sect. 3.
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Table 6. Cubic O}

. AJ
(a3d) 230 on  Swe Symmewy  x ’ i 7 o
Y ac 87
Lattice constant is Al ?6;1 22 8 (l)/4 (l)/8 :33. 8 85(3)0
1.2 nm (ref. lS)} Allz Y S; 0 1/ IR . 0.0530
crystallegraphic 0 96k c x ¥ P 4, 1.349
l .

data on YJAIQO)2

* The values of g arc in units of the clectron charge with4g, + ¢, , = -5.
*  Ref. 26.
¢ x=-0.0306, y=0.0512, z = 0.150 (rcf. 18).

Table 7. Energy Experimental® Calculated®
levels of Pr** ions ?-MLI E{cm™Y) T, E(@cm?) r, Percent free-ion mixtures

in D, sites

i, 0 3 -1 3 99.93H, +0.08 *H, + 0.03 °F,

Note: ... indicates 503 19 1 19 1 99.9 %1, + 0.05°F, +0.04 11,
- that prescnee of 50 4¢ 39 a 0063/, + 0211, +0.08°F,
levelis inferred (see . e 495 2 95.2°H,+3.55°H,+ 1.03°F,
scct. 3, paragraph ¢) 533 1€ 505 1 98.1°H,+0.77°F,+ 043 °F,
e . 506 3 96.1°H,+2.90°H, +0.75 °F,

576 4¢ 532 4 95.6°H,+3.39°H, + 0.88°F,

742 ] 755 1 93.6%H,+5.17°H,+ 091 °F,

759 2 93.3%,+5.75°H,+ 0.54 °F,

H, 2293 2 2286 2 96.8H,+2.26°H,+ 0.9 °F,

2595 2299 4 2270 4 95.5°H,+3.28 H, + 0.42°F,

2311 3¢ 2291 3 97.33,+ 1.3431 + 1.09°F,

2351 1 2357 1 93.3%H,+4.28% + 1.06°F,

2399 2 2412 2 9S.13H +3.59 31 +0.45 1,

2570 3 2577 3 93.6°H,+3.10°F, + 20511,

2581 4 2583 4 94.4%11,+2.73°H_+ 1.06 °F,

2602 1 2597 1 93.4°H,+3.92°F, + 1.62°1,

2618 v 2625 2 94.3%H +2.53H + 1443,

2820 4 2824 4 92430 +4.71°H +2.25°F,

2840 3 2836 3 92.6°1,+5.13°H +0.79°F,

M, 4305 4 4302 4 94.2°H +4.17°F, + 0.90 1,

4744 4316 1 4325 1 95.921 +2.97°F, + 04911,

4339 3 4365 3 95.7°M, +3.22°F, +0.61 °F,

4358 [ 4347 1 95.3%H,+3.37°F,+ 0.60F,

4409 2 4398 2 95.6°H, + 1.84°H + 1.57°F,

4440 3 4431 3 93.6°H, + 3.89°H +0.96 °F,

4567 4 4574 4 92.1°H,+ 3.78 1, + 2.09°F,

4695 1 88.1°H + 5.80°F, + 4.77°F,

4736 3 75471, + 11.0°F, + 4.12°F,

4780 4 8.1, + 12.6°F, + .66 °F,

4843 2 4843 2 B6.8H + 7.99°F, + 2.53°F,

5045 1 5047 1 66.2H,+ 25.7°F,+ 6.80°F,

5141 o 5106 2 7S.70H + 11.8°F,+9.61 °F,
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Table 7 (cont’d).
Energy levels of
Pr’* ions in D, sites

Expenimental Calculated?
By, E(cm?) r, E(cm™) r, Percent free-ion mixtures
F, 5365 4 5388 4 74.0°F, + 156 H, + 521 °F,
5292 . . 5422 | 69.1°F, +22.9°11+ 5.23 F,
5430 2 5424 2 BRAF, ¢ 1461, + 11471,
5535 3 5530 3 67.9°F, + 17.9°H,+ 6,19 F,
5585 ! 5575 ! 83.19F. + 11071, + 264711,
o, 6467 3 6470 3 78.39F, + 14.3°F, + 5.61°F,
6604 6482 I 6486 I TS8F, + 18.7°F, + 3.27°F
6561 4 6577 I TLOF, +22.4°F, + 3.35F,
P IR
2F +4. PR .
6831 ¥ 6803 2 96.0°F, + 1.32°H, + 0.92 /1,
6994 2 6999 2 S4.6°F, +32.4°F,+ 12311,
oF, . N 7040 3 78.0°F, + 14.2°F, + 6.25 11,
7111 7060 4 7050 4 T4.1F, + 18.1°F, + 64141,
7085 1 7088 ! T310F, ¢ 166°F, + 8101,
wmo s
. . + 4. 6 + 1. A
7297 4 7303 4 B8.8°F, + T13F, 4 2771,
7319 2 7314 2 97.3°F, + 120’1, + 0.87 11,
7421 3 7404 3 94.5°F, + 2351, + 142 °F,
7490 ! 7488 | 95.3°F, + 1.90'G, + .69,
G, 9,693 3 98.2'G, +0.76°H_ + 0.62°F,
10,042 . N 9.716 I 98.2'G,+ 0,63, +0.57°F,
9.717 2 9.721 2 97.7'G, + 1.47°F, + 0.58 11,
v om o1 el
R ¢ A 3G, +0. +0.
10,116 4 10,118 4 99.0'G,+0.32',+0.25H,
10,282 2 10281 2 99.01G,+ 0461, +0.20 1,
10,380 3 10,380 3 99.0'G,+0.36",+0.26H,
10916 1 968'G,+182°F, + 119,
D, 16,400 I 16411 1 99.7'D,+0.12°P, +0.08
16883 16,409 2 16417 2 99.5'D, +0.17°P, + 0,14,
16,881 1 16,867 1 971'D_+2.77' +0.05"!
17,088 3 17,082 3 97.6'D,+ 231", +005'G,
17,210 4 17.017 4 974'D.+228',+012'G,
P, 20,534 ] 20,534 1 83.0°P,+159'7,+0.73°P,
v, 20,555 I B4.1'1,+15.6°P,+0.14°P,
20,560 3 99.8'I, +0.07'G, +007°P,
20,681 4 99.9'1,+0.08°P, +0.02'D,
20,697 2 99.91,+007°P, + 003 D,
20,937 2 99.9'1 +0.04°P, + 0.02°P,
20,938 | 99.9'7, +0.02°P,+0.01 G,
21




Table 7 {cont’'d). Expenmental® Calculated®
Energy levels of Y E(cm™) r, E(cm™) T, Percent free-ion mixtures
Pr’*ions in D, sites
P, 21,045 2 21,056 2 98.5°P, +1.13°P, + 0.14°F,
21,099 21,113 4 21,103 4 97.0°P, +227°P,+ 040/

21,237 3 99.3°P +0.31°P,+0.09 '/,
", S - 21,456 1 87.7'1,+9.93°P,+2.11'D,
21,250 o o 21,527 3 96.0'/,+2.82°P,+095'D,
21,716 4 843, +13.1°P,+1.38'D,
21,834 3 88.9',+9.79°P,+0.92'D,
21,858 4 95.7'1,+3.43°P,+0.38°P,
21876 2 95.5',+3.82°P,+042'G,
22,005 1 75.0',+233°P,+0.73'G,
P, 22,103 2 22,076 2 94.6°P,+392',+ 1.12°P,
22,147 22,153 1 22,172 1 84.9°P,+14.1'1,+0.38°P,
22,295 1 22,317 1 80.4°P,+18.8'/,+048'D,
22,367 4 22,364 4 80.8°P,+17.0',+1.29°P,
22416 3 22410 3 86.8°P,+ 124, +0.43'D,
'S, . o 46,950 1 99.8'S,+0.08',+0.06'C,
46,900
¢ Experimental cnergy lcvels and symmetry labels established from spectra reported in
tables 3o 5.

* Theoretical encrgy levels calculated using B, (cm™'): B, (481), B,,(123), B, (-146),
B,, (-2248), B, (~1139), B, (-1653), B, (-772), B, (869). B, (-656), rms deviation
between S1 experimental and calculated levels is 11 cm.

¢ Three largest terms of the percent free-ion mixture.

4 Theoretical free-ion centroids of #*'L manifolds using set of atomic parameters listed in
section 6.

©  Symmetry labels assigned with assistance from the calculauon; data in tables 3 1o 5 are
compatible with these assignments.

7 Original levels used in calculation in parcntheses: 2618 (2613), 5141 (5121), 6831
(6812).
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5. Fluorescence and Selective Excitation Spectra

Fluorescence and selective excitation experiments at 1.6 K further
assist in the assignment of Stark ievels. The results of emission from
the 'D, and *P levels are given in table 3.

The 16,409 cm ' Stark level of the ’D2 manifold was excited directly
using a single-frequency cw dye laser of 2-MHz bandwidth. The
result was the elimination of a number of weak fluorescence peaks
that are observed by nonselective excitation. This is important since
the 16,381 cm™ transition which terminates on the Z, (19 am™) level has
comparable intensity to peaks associated with Pr’* ions in other sites.
Notwithstanding the narrow excitation bandwidth, several weak
peaks were still observed, showing that perturbed sites with small
energy shifts are present.

Figure 9, the emission from 'D,to the 3H‘ manifold at 1.6 K, shows three
sharp peaks and two bands, each of which containsareasonably sharp
peak. The three sharp peaks are assigned as transitions to the levels
Z,(0), Z,(19), and Z,(50), all in cm™. If the symmetry of each of these
levelsis r,r, and r, respectively, then the originating Stark level in
'D, has I', symmetry. This assignment within the 'D, manifold is con-
sistent with analysis of the hot bands observed in absorption. The
relatively sharp peak in each of the two bands is used to establish
additional Stark levels at 533 cm™' (T")) and 742 cm™' (T",). The broader
structure is assigned to phonon-assisted transit.ons.

The °P  level was excited by the 476.5-nm Ar-ion laser line and
subsequent nonradiative relaxation. Consequently, several sites were
involved in the emission. However, by comparing the derived energy
levels with those obtained from the 'D, emission and with energy
levels reported earlier by Hooge [7], we could assign the emission
spectrum to levels of Pr** ions in D, sites for the °H, and *H, manifolds
(seetable 3). Levels derived from the 'D, emission not observed in the
’P, emission weie assigned to I', symmetry based on electric-dipole
selection rules for D, symmetry.
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Figure 9. Site-selective laser excitation in ‘Dz manifold recorded at 1.6 K; emission is observed to ’H‘
ground state manifold.
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6.

Calculation of Crystal-Field Splitting

From the preceding analyses we have determined assignments for 17
', 121,101, and 12 I, experimental Stark levels. These 51 levels
were compared with the results obtained from the following crystal-
field splitting calculation.

The free-ion wave functions were determined by diagonalizing a
Hamiltonian containing the Coulomb interaction described in terms
of Racah parameters E'", E?, and E? and the spin-orbit interaction
parameter . Alsoincluded in the free-ion calculation was the inter-
configuration interaction in terms of parameters a, B, and y. All
parameters were expressed in units of cm™". The values of the free-ion
parameters used in our calculation were obtained from Carnall et al
[22] and are

E™ = 45482,
E?® =21935,
E® = 466.73,
£ =740.75,
o =21.255,

B =-799.94, and
y=13429 (all in ecm™).

The crystal-field splitting was calculated using the Hamiltonian (23]

Her= 3, BinCimt i) (1)
tkm
where ,
Conli)= - &y, (6.6, 2
(i) e wnlB., 0

and the sum over i covers the two electrons of the configuration 4f* of
Pr’. For D, symmetry there are nine nonvanishing B, crystal-field
parameters with even k. For the yttrium site in YAG there are six
nonequivalent magnetic sites which are related by rotation opera-
tions. Explicit algebraic expressions for each set of B, parameters
associated with one of the six equivalent sets are given by Morrison
and Leavitt (4]. We use the first set as defined by them (page 633, ref.
4).
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The first determination of a set of B, parameters was obtained from
a lattice-sum calculation that included point-charge, point-dipole,
and self-induced contributions [24,25). Table6givestheion positions
in the lattice, effective ionic electric charges, and the polarizability of
the oxygenions [26]. The parameters A,__(table7) are related to the B,
parameters through the expression

B, =p(PDA,_ . (3)

where p,(Pr) are radial factors [25]. The lattice-sum results provided
an initial view of the overall splitting before the B, parameters were
varied to improve agreement with experimental energy levels and
symmetry assignments.

Next, an empirical set of B, parameters was determined from the best
quadratic fit of B, parameters obtained from earlier analyses of the
observed spectra of Nd*, Tb*, Dy*, and Er* in YAG [24]. The
calculated splitting using these parameters was in reasonable agree-
ment with the splitting observed in Pr*:*YAG. Subsequent variation
of the parameters affected the symmetry assignment for only a few
Stark levels. From these calculations, Z, (0 cm™') was assigned T,
symmetry. This choice proved to be consistent in analyzing the 50-
cm™ hot bands and was the only exception to our algorithm of
assigning symmetry labels to observed Stark levels.

Using established I' and I', experimental levels in the calculation, we
allowed the B, parameters to vary to obtain the best overall agree-
ment between calculated and experimental levels. With the new set of
parameters, we then predicted the splitting of the I, and I, levels and
compared these results with our experimental levcls. This calculation
again predicted Z, (50 cm™) to have I', symmetry. A subsequent
calculation including all 51 levels with their experimentally estab-
lished symmetry labels was performed, giving a best overall rms
deviation of 11 cm™. An additional six Stark levels, whose symmetry
could not be established from experiment without some ambiguity,
were identified through the results of the calculation. Table 7 com-
pares the calculated and experimental levels for all manifolds.




7.

Comments

With few exceptions, predicted splittings and symmetry assignments
for the *H,,’H,, and 'D, manifolds are in agreement with levels and
assignments established from emission and hot-band absorption data.
Fluorescence from the *P, manifold to a 576-cm~' Stark level indicates
that the level has I'), I',, or I', symmetry. Small changes in B,
parameters greatly affect the predicted splitting of °H,. The ground-
state and excited Stark levels at 19 cm™ and 50 cm™ are observed in
both emission and absorption. The I’ labels deduced from the
emission spectra agree with those deduced from the absorption
spectra. Our results differ in some details from other results reported
recently [9,11], in which higher concentrations of Pr** or higher
temperatures were used.

Level Y, in the ’H, manifold is predicted to have I', symmetry. This is
in agreement with an analysis of the hot bands observed in the
absorption spectrum. However, the fluorescence spectra suggestaTl’,
symmetry. Since 3H5 has only three I, levels, we chose the three levels
for which emission, absorption, and the crystal-field splitting calcula-
tion were all in agreement (namely Y,, Y,, and Y ) as [, levels. We
assigned Y, toI', symmetry in agreement with absorption data and the
prediction by the crystal-field splitting calculation.

Emission from *P and 'D, to the °’H, manifold is generally very weak
[7,9). Hooge [7] reports fluorescence from 3P0 to Stark levels at 4296,
4333, 4396, 4451, and 4561 cm™'. These levels correspond to levels
established from our absorption data as follows: 4305 (T",), 4339 (T',),
4409 (T")), 4440 (")), and 4567 (I') cm™'. The selection rules are
consistent in analyzing both the emission and absorption data for *H,.
The crystal-field splitting calculation (table 7) is also in agreement
with these assignments, although the 4339 (I',)) cm™' level is predicted
to lie somewhat higher. Levels not observed in emission from *P  but
identified from hot-band absorption data include 4316 (T")), 4358 (I")),
5045 (T"), and 5141 (T',) cm™'. These levels agree with the calculated
splitting given in table 7.

A small change in calculated splitting of the six highest energy Stark
levels of the *H, manifold has a great influence on the calculated
splitting of the °F, manifold. Unfortunately, we have experimental
data on only three of these levels: 4843 (I")), 5045 (I",), and 5141 (I")
cm”'. Consequently, we reexamined our hot-band data and the
reported levels for the *F ,manifold [7,9]. There are several intense hot
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bands at 5379 and at 5535 cm! that persist even in the 15 K absorption
spectrum. Furthermore, a pair of hot bands separated by 31 cm™
implies a I, level at 5535 cm™, a level reported by others [7,9]. We
chose W, (6365 cm™') to have I', symmetry since we found no evidence
for a 50-cm™' hot band. The calculation predictsaI', level at 5388 cm™.
Hot-band data indicate that W, (5430 cm™') has I, symmetry and that
W, (5585 cm™) has I', symmetry, in agreement with the calculated
splitting.

The experimental assignments given to Stark levels of the *F, and °F,
manifolds are in agreement with the calculated splitting. Withonly a
few minor exceptions, our levels agree with those reported by Hooge
[7]. The predicted splitting of the 'G, manifold was the most difficult
to reconcile with experiment, since we could identify only some of the
Stark levels out of the nine expected in D, symmetry. The predicted
manifold splitting is over 1200 cm™ (see table 7), with the four lowest
energy levels found within 33 cm™' of each other. A pair of hot bands
separated by 31 cm™ placesaT',level at 10,380 cm™'. The level observed
at 9828 cm™' appears to have I', symmetry, in agreement with Hooge
[7). The predicted level is nearly 80 cm™ away from the observed level.
We could not reduce this difference without affecting the overall
agreement obtained for other established experimental levels used in
the calculation.

The predicted splitting of the 'D, manifold is over 700 cm™. All five
expected Stark levels and their symmetries have been identified from
experiment; the calculated splitting is in reasonable agreement.
Throughout all variations of B, parameters, the two lowest Stark
levels, having symmetry labels I', and I',, would interchange positions
as the lowest energy level in the manifoid. Clle-selective excitation
from the 16,409 cm™ level is consistent with the assignment of T,
symmetry, which is based on an analysis of the hot-band data in
absorption.

Table 7 indicates that the predicted splitting of the 'I, manifold over-
laps the *P, manifold. Our assignments to the *P, and *P, manifolds
agree with work reported earlier {7,9]. The limited number of ob-
served spectra associated with the I, precluded an analysis of the
splitting of this manifold. Assignments given to the Stark levels of the
’P, manifold are in agreement with results from the crystal-field
splitting calculation.




8. Conclusions

From an analysis of the emission and absorption spectra of Pr**:YAG,
a number of Stark levels have been assigned to Pr* ions occupying Y*
ion sites of D, symmetry in the garnet lattice. The most intense spectra
can be analyzed with consistency. However, the origin of the weak
spectra is uncertain, since some Pr** ions are found in minority sites.
On the basis of 51 Stark levels assigned to Pr** ions in D, sites,
comparison between experimental and calculated levels using the B,
parameters given in table 7 yields an rms deviation of 11 cm™".
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